If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying y2 + -100 = 4y Reorder the terms: -100 + y2 = 4y Solving -100 + y2 = 4y Solving for variable 'y'. Reorder the terms: -100 + -4y + y2 = 4y + -4y Combine like terms: 4y + -4y = 0 -100 + -4y + y2 = 0 Begin completing the square. Move the constant term to the right: Add '100' to each side of the equation. -100 + -4y + 100 + y2 = 0 + 100 Reorder the terms: -100 + 100 + -4y + y2 = 0 + 100 Combine like terms: -100 + 100 = 0 0 + -4y + y2 = 0 + 100 -4y + y2 = 0 + 100 Combine like terms: 0 + 100 = 100 -4y + y2 = 100 The y term is -4y. Take half its coefficient (-2). Square it (4) and add it to both sides. Add '4' to each side of the equation. -4y + 4 + y2 = 100 + 4 Reorder the terms: 4 + -4y + y2 = 100 + 4 Combine like terms: 100 + 4 = 104 4 + -4y + y2 = 104 Factor a perfect square on the left side: (y + -2)(y + -2) = 104 Calculate the square root of the right side: 10.198039027 Break this problem into two subproblems by setting (y + -2) equal to 10.198039027 and -10.198039027.Subproblem 1
y + -2 = 10.198039027 Simplifying y + -2 = 10.198039027 Reorder the terms: -2 + y = 10.198039027 Solving -2 + y = 10.198039027 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + y = 10.198039027 + 2 Combine like terms: -2 + 2 = 0 0 + y = 10.198039027 + 2 y = 10.198039027 + 2 Combine like terms: 10.198039027 + 2 = 12.198039027 y = 12.198039027 Simplifying y = 12.198039027Subproblem 2
y + -2 = -10.198039027 Simplifying y + -2 = -10.198039027 Reorder the terms: -2 + y = -10.198039027 Solving -2 + y = -10.198039027 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '2' to each side of the equation. -2 + 2 + y = -10.198039027 + 2 Combine like terms: -2 + 2 = 0 0 + y = -10.198039027 + 2 y = -10.198039027 + 2 Combine like terms: -10.198039027 + 2 = -8.198039027 y = -8.198039027 Simplifying y = -8.198039027Solution
The solution to the problem is based on the solutions from the subproblems. y = {12.198039027, -8.198039027}
| 10y-4y-8=20 | | (u-4)^2/3 | | 4k=60+6k | | 9/5(k-273.15) | | 3-2/6b=1/3b-7 | | k+10/k=4/6 | | 10(x^2-21x+75)=0 | | 5x+2(5x-2)=176 | | 3(2x-2)=4(x+4) | | 8x+10-2x+36=4x+15+8x-28 | | n+1=13-2n+n | | 10y-4-8=20 | | 3(3.99)+1b-0.11=5b | | (2x-3)(2x+3)=55 | | x^2-21x+75=0 | | 5y-4=8+y | | 3x-2=7x+6 | | -4+4/5x=6 | | -5=9+c-4 | | 5x-3+4x-24=3x+2+4x-9 | | -2(6+4b)=-6b | | 10y-4g-8=20 | | r/10+1.1=0.3 | | 2n+3.5=6.7 | | W^2+7=w^3+9 | | (A^-3b6-4/a^7b^3)(a^3b^4/a^-3b^-3)^2 | | 5x-3(x-5)=15 | | 2p-2=14+6p | | 6(r+7)=35+5r | | 3x=56+7(9)y | | 4t+8t=60 | | 9m+108=9m*5 |